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Problem 1:

a) Notice that for model j, the likelihood function is

Y | Xj ∼MVN(Xjβ, σ
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where I is an n× n identity matrix.
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Then, we have that
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where we define
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Then, by integrating the two integrals, we find
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b) Now we compute the Bayes factor for

H0 : Model 1 and H1 : Model 2,

which is given by the following quantity

B01 =
m0(y)

m1(y)
=
m(y |M = 1)

m(y |M = 2)
.

c) There are many methods to approximating B01, which can be achieved by approximating
m(y |M = j) with m̂(y |M = j). Here, we discuss three methods to finding m̂(y |M = j).
Here, we will denote θj = (βj , σ
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where we sample θ
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A major problem with this approach is that if the prior distribution is not very infor-
mative, then this process is extremely inefficient and will require S to be very large.

2) Importance sampling. Here, we will make use of an importance distribution π?j (θ).
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It can be shown that the importance distribution in this fashion does not impact inference
and thus should be chosen in a good way. We will use the LSE estimates and impose
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b

a− 1
= MSE and

3) Importance sampling on steroids. This is the last method and is similar to method 2.
The difference is now that
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d) Here we implement a small simulation study to compare these three techniques. Suppose
that model 1 and model 2 are

Model 1: Yi = 3 + 0.5x1i + 1.25x2i + e1i, e1i
iid∼ N(0, 1)

Model 2: Yi = 3 + 0.5x1i + 1.25x3i + e2i, e2i
iid∼ N(0, 1.22).

That is, not a full versus reduced model scenario. We will generate our data under model 1. To
do this, we generate covariate x1 from N(2, 1) and covariates x2 and x3 from a Binom(1, 0.5).
Before we approximate the Bayes factor, we first compute the exact Bayes factor from problem
1. Here we impose that the prior distributions are

β1 | σ21 ∼ N(0p1 ,Tp1) β2 | σ22 ∼ N(0p2 ,Tp2)
σ21 ∼ IG(1, 1) σ22 ∼ IG(1, 1),
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where 0pj is a vector of size pj whose entries are all ones and Tpj is a pj × pj diagonal matrix
whose entries are all 1000. Using this formulation, the expression in problem 1, and the
generated data, the exact Bayes factor is given by

B01 =
C?1
C?2
· Γ(α1)

Bα1
1

· B
α2
2

Γ(α2)
= 8877.709.

Now, implementing the three methods, we obtained an estimated Bayes factor of

Method 1: B̂01 = 98876.07

Method 2: B̂01 = 8961.766

Method 3: B̂01 = 8549.591.

As we expected, method 1 did not work very well. Although it gave the correct decision, it
does not estimate the exact Bayes factor well. Methods 2 and 3 work pretty similarly and
have an approximation that is very close to the exact Bayes factor.
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