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Problem 1:
a) Notice that for model j, the likelihood function is
Y | X; ~ MVN(X;3,031)

where I is an n X n identity matrix.
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Define C; to be

Then, we have that
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where we define
p=C x (3 Bjo + X)Y)
C=(XX;+x)7"
A= E @0 + X’Y

Then, by integrating the two integrals, we find
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b) Now we compute the Bayes factor for

Hy: Model 1 and Hp: Model 2,

which is given by the following quantity
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¢) There are many methods to approximating Byj, which can be achieved by approximating
m(y | M = j) with m(y | M = j). Here, we discuss three methods to finding m(y | M = j).

Here, we will denote 8; = (Bj,o*]z)’.

1) Monte Carlo approximation. We will compute
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where we sample 0]@ ~ 7j(0), i.e. sample Bj(t) | ai(tfl) ~ N(Bjo,aj(.tfl)Ejo) and

a](-t) ~ IG(ajo,bjo). Then, by the law of large numbers,
m(y | M =j) = E[f(y | 6;)].

A major problem with this approach is that if the prior distribution is not very infor-
mative, then this process is extremely inefficient and will require S to be very large.
2) Importance sampling. Here, we will make use of an importance distribution w]*(O).

Sampling OJ@ ~ 7r]*~(0), compute the approximation
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where the weight w; is given by
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It can be shown that the importance distribution in this fashion does not impact inference
and thus should be chosen in a good way. We will use the LSE estimates and impose

m5(8j | 07) = N(X'X)"' X'y, 05 (X'X) 1)
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where a and b are chosen such that

3) Importance sampling on steroids. This is the last method and is similar to method 2.
The difference is now that
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d) Here we implement a small simulation study to compare these three techniques. Suppose
that model 1 and model 2 are

m(y | M =j) =

nd

Model 1: Y, =3+0.5z1; + 1.25x9; + ey;, i~ N(O 1)
Model 2: Y; = 3+ 0.521; + 1.25x3; + ea;, : “Nd N(0,1.2%).

That is, not a full versus reduced model scenario. We will generate our data under model 1. To
do this, we generate covariate z; from N (2, 1) and covariates x2 and z3 from a Binom(1, 0.5).
Before we approximate the Bayes factor, we first compute the exact Bayes factor from problem
1. Here we impose that the prior distributions are

ﬂ1|0% ~ N(OPI’TPI) 52|0-% ~ N(OPQ?TP2)
o2 ~ IG(1,1) o3~ IG(1,1),



where 0, is a vector of size p; whose entries are all ones and T, is a p; X p; diagonal matrix
whose entries are all 1000. Using this formulation, the expression in problem 1, and the
generated data, the exact Bayes factor is given by
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= 8877.709.

Now, implementing the three methods, we obtained an estimated Bayes factor of

Method 1: By, = 98876.07
Method 2: By, = 8961.766
Method 3: By; = 8549.591.

As we expected, method 1 did not work very well. Although it gave the correct decision, it
does not estimate the exact Bayes factor well. Methods 2 and 3 work pretty similarly and
have an approximation that is very close to the exact Bayes factor.



